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EXACT AND APPROXIMATE FORMULAS

FOR DEFLECTIONS OF AN ELASTICALLY

FIXED ROD UNDER TRANSVERSE LOADING

UDC 539.3Yu. V. Zakharov,1 K. G. Okhotkin,2

N. V. Filenkova,3 and A. Yu. Vlasov3

An exact solution is obtained for the nonlinear bending problem of a thin rod elastically fixed at one
end and loaded by a transverse concentrated load of constant direction at the other end. The solution
is written in parametric form and expressed in terms of the Jacobi elliptic functions. Based on the
exact solutions, approximate formulas are proposed for the deflection of the rod tip.
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Introduction. The geometrically nonlinear bending problems of thin rods are treated in a general formula-
tion in [1, 2], and the problems of rods on elastic supports and elastic foundations are considered in [3, 4]. Theory
for the geometrically nonlinear bending of thin rods is developed in [5, 6]. In [6], the equilibrium configurations of a
rod are determined analytically and classified for various dead loads and constraints imposed on the rod ends. The
solutions obtained are written in parametric form and expressed in terms of elliptic integrals and Jacobi functions,
which depend on just one parameter — the modulus of the elliptic functions, which is determined by the boundary
conditions and external load, unlike in the approach of [1, 2] where the solutions depend on three parameters. The
critical loads and equilibrium shapes of a rod rigidly clamped at one end and subjected to a tip follower force
at the other end were obtained in [7]. The solutions mentioned above, however, are of limited use since they are
inapplicable to rods with elastic constraints.

The present paper addresses the case where one end of the rod is elastically fixed and the other end is free.
An exact analytical solution of the nonlinear bending problem of this rod subjected at the free end to a transverse
load of constant direction. The critical loads are determined, and the equilibrium configurations of the bent rod
are obtained. Approximate formulas for the deflection of the rod tip are derived.

1. Solution of the Problem of an Elastically Fixed Rod. Let us consider a thin inextensible rod
of length L and flexural rigidity EI. We introduce Cartesian coordinates xy such that the initially straight rod is
oriented along the x axis, is elastically fixed at the left end at the coordinate origin, and is free at the right end
(Fig. 1).

The rod is bent by a transverse force P applied to the right end of the rod. The arc length of the rod from
the left end to the current point will be denoted by l, and the angle between the tangent to the current point and
the negative direction of the y axis by γ(l). According to [6], the equilibrium equation of the rod is written as

d2γ

dt2
+ q2 sin γ = 0, (1)

where t = l/L is the dimensionless length, which varies from 0 to 1, q2 = PL2/(EI) is the eigenvalue, and P is the
magnitude of the point force.
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Fig. 1. Coordinate system.

At the fixed end of the rod, the boundary condition of the third kind is specified:

γ(0) − h
dγ(0)

dt
=

π

2
, (2)

where h = EI/(cL) is the elastic-clamping coefficient determined by the properties of the clamping fixture and
the rod and c is the rotational stiffness determined by the elastic properties of the clamping fixture [3, 8]. The
coefficient h thus introduced allows one to obtain the well-known boundary condition for the clamped end [6] in
the case of high stiffness c (h → 0). In the limiting case of small c (h → ∞), one obtains the boundary condition
for the hinged end.

At the free end, the bending moment vanishes:

dγ(1)
dt

= 0. (3)

According to [6], the solution of Eq. (1) is written as

γ = 2 arcsin [k sn (qt + F1)], (4)

where sn is the Jacobi elliptic sine and the force P is expressed in terms of the modulus of the elliptic functions k

and the parameter F1 (integration constants) using the boundary conditions.
The argument of the elliptic functions will be denoted by

u = qt + F1. (5)

Using boundary condition (2), we obtain the following transcendental equation for the integration con-
stant F1:

2 arcsin (k sn F1) − 2hkq cn F1 = π/2. (6)

Condition (3) implies that cn (q + F1) = 0, which yields

q = (2n − 1)K(k) − F1 (7)

[n = 1, 2, 3, . . . is the solution mode number and K(k) is the complete elliptic integral of the first kind]. Solution
of system (6), (7) gives the eigenvalue spectrum qn(k), which in turn determines the expression for the normalized
loads corresponding to the nth mode:

P/Pcr ≡ (2/π)2q2 = (2/π)2[(2n − 1)K(k) − F1]2. (8)

Here Pc = (π/2)2EI/L2 is the Euler critical load. Expression (8) has the same structure as the expression for the
normalized loads for a cantilever rod under loading of constant direction [6]. For transverse loading, the parameter k

varies in the range 1/2 � k2 � 1. The parameter F1 is determined numerically by solving system (6), (8) for given
values of the elliptic modulus k and the coefficient h. For various ranges of the load P/Pcr between successive
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Fig. 2. The integration constant F1 as a function of the elliptic modulus k and the elastic-fixing
coefficient h for the first and second modes: curves 1 and 2 refer to n = 1 and 2, respectively.

thresholds, which can be determined using a linear approximation, we obtain surfaces “glued” along two lines:
1) for the threshold value of the modulus k2 = 1/2; 2) for h = 0. Figure 2 shows these surfaces for modes n = 1, 2.

For the case of rigid clamping represented by the curve h = 0 in Fig. 2, the parameter F1 is given by [6]
F1 = F [arcsin (

√
2/2k), k]. For k2 = 1/2, which corresponds to the threshold loads, and any value of the elastic-

clamping coefficient h (curve k =
√

2/2 in Fig. 2), we have F1 = K(
√

2/2). In this case, relation (8) leads to the
following equation for the threshold loads corresponding to the nth mode [6]:

Pn/Pcr = (n − 1)2[(4/π)K(
√

2/2)]2 ≈ 5.6(n− 1)2. (9)

Figure 3 shows the normalized load (8) versus the elliptic modulus k for various values of h for the first and second
modes. As the coefficient h increases, the surfaces corresponding to the first and second modes are located lower
than in the case h = 0. This implies that for the elastic fixing conditions, deflections of the same magnitude occur
for lower loads than in the clamped case.

Integration of the relations dx/dl = sin γ and dy/dl = cos γ with the use of Eq. (5) yields the coordinates of
an arbitrary point of the rod

x

L
=

2k

(2n − 1)K(k) − F1
(cn F1 − cn u),

y

L
= t − 2

(2n − 1)K(k) − F1
(E(am u, k) − E1(k)),

(10)

where E(am u, k) and E1(k) = E(amF1, k) are incomplete elliptic integrals of the second kind of the elliptic
amplitude and t is the normalized length of the rod. Expressions (10) define the bent rod configurations in parametric
form.

Figure 4 shows equilibrium shapes of the elastically fixed rod corresponding to various values of the applied
force for h = 0.4 for the first and second modes.

1.1. Coordinates of the Inflection Points. The points at which the second derivative d2y/dx2 vanishes are
the points of inflection of the rod axis. We denote the curvilinear coordinate of such a point by t1. Using (4), we
evaluate the second derivative of the function describing the bent axis of the rod determined by the parametric
equations (9) of the form x = x(t) and y = y(t):

d2y

dx2
=

x′y′′ − y′x′′

x′3 =
1

sin3 γ

dγ

dt
=

2kq cn u

sin3 γ
.

128



0 0.8
0.7

0

4

8

12

16

1.0
0.9

1

2
h

k

P/Pcr

P1/Pc

P2/Pc

1

2

x/L

y/L

_0.6

_0.8

_0.2

_0.4

0

0.2

0.4

0.4 0.8

1

2

3

4

P

Fig. 3 Fig. 4

Fig. 3. Eigenvalue spectrum for the equilibrium equation of an elastically fixed rod under transverse loading
for the first and second modes: curves 1 and 2 refer to n = 1 and 2, respectively.

Fig. 4. Shapes of a cantilever for h = 0.4 and various loads P/Pcr: curves 1 and 2 refer to the first mode
(curve 1 refers to P/Pcr = 0.004 and curve 2 to P/Pc = 0.79) and curves 3 and 4 refer to the second mode
(curve 3 refers to P/Pc = 5.58 and curve 4 to P/Pc = 15.48).

Taking into account the properties of the zeroes of the Jacobi elliptic cosine cn [(2m + 1)K(k)] = 0 and using
expression (7) for the eigenvalue q, from the last expression we obtain

[(2n − 1)K(k) − F1]t1 + F1 = (2m + 1)K(k),

where n = 1, 2, 3, . . . and m enumerates zeroes of the elliptic cosine and is equal to the ordinal number of the
inflection point. As a result, we have

tnm
1 =

(2m + 1)K(k) − F1

(2n − 1)K(k) − F1

[F1 is determined from Eq. (6)].
The number of inflection points for a mode is equal to the mode number. The inflection point number m

depends on the mode number and varies in the range from 0 to n − 1. For the first mode, one inflection point
occurs at the rod tip: t101 = 1, for the second mode, a second inflection point occurs, whose location on the rod axis
changes for 1/2 � k2 � 1, and for the third mode, there are three inflection points.

For a rigidly clamped rod, the coordinates of moving inflection points are found in [5] to be in the intervals
0 � t201 � 1/3, t211 = 1 and t211 = 1 for n = 2 and in the intervals 0 � t301 � 1/5, 1/2 � t311 � 3/5, and t321 = 1 for
n = 3. These intervals correspond to the case of an elastically fixed cantilever for h = 0.

1.2. Coordinates of the Compression Points. By compression points we understand the points at which the
slope of the tangent to the x axis is equal to that of the compressive force. We denote the unknown curvilinear
coordinate of this point by t0. Setting γ(t0) = 0 in the expression for the tangent slope (4), we obtain

0 = 2 arcsin [k sn (qt0 + F1)].

Using the properties of the zeroes of the elliptic sine sn [2mK(k)] = 0 and expression (7) for the eigenvalue q, we
obtain

[(2n − 1)K(k) − F1]t0 + F1 = 2mK(k).

129



0 40 80

0.25

0.50

0.75

1.00

t0
nm

, t1
nm

P1/Pcr P2/Pcr P3/Pcr
P/Pcr

2

4

1

3

6

5

0

0.2

0.4

0.6

0.8

1.0

f

1 2 P/Pcr

1

3

5

4

2 0
2

Fig. 5 Fig. 6

Fig. 5. Coordinates of the inflection points tnm
1 and compression points tnm

0 versus transverse load
for various values of h: solid curves refer to h = 0 and dashed curves refer to h = 1.2; curve 1 refers
to t301 , curve 2 to t201 , curve 3 to t311 , curve 4 to t210 , curve 5 to t310 , and curve 6 to t320 .

Fig. 6. Tip deflection versus P/Pc for various values of h: curve 1 refers to h = 0 and curves 2 and
2′ refer to h = 0.2 [curve 2′ is obtained by approximate formula (31)], curve 3 refers to h = 1.2,
curve 4 to h = 4.5, and curve 5 to h = 7.

Here n = 1, 2, 3, . . . and m enumerates the elliptic-sine zeroes and is equal to the ordinal number of the compression
point. As a result, we have

tnm
0 =

2mK(k) − F1

(2n − 1)K(k) − F1
, (11)

[F1 is determined from Eq. (6)].
For a mode, the number of compression points is equal to n − 1. The compression-point number takes the

values m = 1, . . . , n − 1. There are no compression points for the first mode. For n = 2, one compression point
occurs in the interval 1/2 � t210 � 2/3 for 1/2 � k2 � 1; for n = 3, two compression points occur in the intervals
1/4 � t310 � 2/5 and 3/4 � t320 � 4/5.

Figure 5 shows the coordinates of the inflection and compression points versus the load P/Pcr. The vertical
lines in Fig. 5 correspond to the threshold values of the loads (8). The horizontal lines correspond to the lower
bounds of the intervals of compression and inflection points. (For all these lines, we have k2 = 1/2.) As h increases,
the upper bounds of these intervals decrease and coincide with the lower bound as h → ∞. In other words, as
h → ∞, the coordinates of the inflection and compression points do not depend on the magnitude of the applied
force and take the values tnm

1 = m/(n− 1) and tnm
0 = m/(2(n− 1)), respectively, which correspond to the location

of the points on the rod axis for the threshold loads Pn/Pcr. For any values of the coefficient h, the load P/Pc, and
the mode number n, an inflection point occurs at the free tip of the cantilever.

1.3. Tip Deflection. The exact expression for the deflection of the rod tip is given by

f(k) ≡ y(1)
L

= 1 − 2
E(k) − E1(k)
K(k) − F1

, (12)

where E(k) is the complete elliptic integral of the second kind.
Figure 6 shows tip deflection versus load for various values of the coefficient h. One can see that for the

same loads, the tip deflection of the elastically fixed rod increases with increasing h.
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2. Approximate Expressions for the Tip Deflection. We obtain approximate formulas for the elliptic
integrals appearing in the expression for the tip deflection (12) for two limiting values of the coefficient h. We
consider expression (6), which determines the parameter F1 for the first mode.

2.1. Case of Small Values of the Coefficient h (h → 0). Setting h = 0 in (6), we obtain F1 = F0 and
F0 = F (arcsin [

√
2/(2k)]). For a small positive change in the coefficient h in the vicinity of zero, we write F1 as

F1 = F0 ±∆F , where ∆F is a small quantity. Expansion of the terms in (6) in a Taylor series in terms of the small
parameter ∆F yields

arcsin [k sn (F0 ± ∆F )] ≈ π/4 ± (4k2 − 2)1/2∆F/2,

cn (F0 ± ∆F ) ≈ (4k2 − 2)1/2/(2k)∓ (1/(2k))∆F.

Substitution of these expansions into (6) taking into account that ∆F → 0 as h → 0 leads to the approximate
expression

F1 ≈ F0 + (K(k) − F0)h. (13)

Since E1 = E(am F1, k), expansion in terms of the small parameter ∆F yields

E1 ≈ E0 + (K(k) − F0)h/2, (14)

where E0 = E(arcsin [
√

2/(2k)]). Using expressions (12)–(14), we obtain the following approximate expression for
the tip deflection of the elastically fixed rod subjected to transverse loading for small values of the coefficient h:

f(k) ≈ 1 − 2
(E(k) − E0) − (K(k) − F0)h/2

(K(k) − F0)(1 − h)
. (15)

For h → 0, relation (15) expresses the tip deflection of the rigidly clamped rod under transverse loading [9].
Using the expansions of the differences of the elliptic integrals E(k)−E0 and K(k)−F0 in series in the small

parameter ξ = (k − √
2/2) [9] and keeping the first three terms in these expansions, we obtain the approximate

formula for the tip deflection

f(k) ≈ 1 − 240 − 260
√

2ξ + 17ξ2

(240 + 60
√

2 ξ + 497ξ2 + . . .)(1 − h)
+

h

1 − h
. (16)

In a similar manner, we linearize expression (8) for the normalized load P/Pcr. Using the approximate expression (13)
for F1 and introducing the notation for the normalized load λ ≡ P/Pcr, we have

λ = (2/π)2(1 − h)2[K(k) − F0]2.

Using the results of [9] for the expansion of K(k)−F0 in a series in the small parameter ξ up to and including
the second term, we arrive at the cubic equation

(
√

ξ )3 + 23/2
√

ξ − π
√

λ/(23/4(1 − h)) = 0. (17)

Bearing in mind the condition 1/2 � k2 � 1, we solve Eq. (17) for
√

ξ by the Ferro–Cardano formula and expand it
in a series in the small parameter λ, we obtain the approximate relation between the parameter ξ and the normalized
load λ:

ξ ≈
(π

2

)2
√

2
(1 − h)2

(λ

8
− λ2

64(1 − h)2
+ . . .

)
. (18)

Substituting (18) into (16), expanding the result in a series in the small parameter λ, and retaining the
first two terms in the series, we arrive at the following approximate relation between the tip deflection and the
normalized load:

f(λ) ≈ π2

12(1 − h)3
λ +

π2(π2 − 4)
384(1− h)5

λ2 + . . . . (19)

In the case of a rigidly clamped rod, the linear term in (19) becomes an approximate expression for rod deflection
under transverse loading, which is well-known in the theory of material strength. For small values of the coefficient h,
formula (19) can be used to determine the deflection whose magnitude does not exceed 20% of the rod length.
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2.2. Case of Large Values of the Coefficient h (h → ∞). Letting h → ∞ in (6), we obtain F1 = K(k).
Hence, for infinite positive values of the coefficient h, the quantity F1 can be written as F1 = K(k) ± ∆F , where
∆F is a small term. Expansion of the terms in (6) in a Taylor series in the small parameter ∆F yields

arcsin [k sn (K(k) ± ∆F )] ≈ arcsink − (1/2)k(1 − k2)1/2∆F,

cn (K(k) ± ∆F ) ≈ ∓(1 − k2)1/2∆F.

Substitution of these expansions into (6) yields

∆F = ±R/h1/2,

where R =
√

(arcsink − π/4)/(k
√

1 − k2 ).
Since F1 = K(k) ± ∆F and E1 = E(am F1, k), we obtain the approximate expressions

F1 = K(k) ± R/h1/2, E1 = E(k) ± (1 − k2)R/h1/2. (20)

In view of (12) and (20), the approximate expression for the tip deflection of the elastically fixed rod under
transverse loading becomes

f(k) ≈ 1 − 2(1 − k2). (21)

Expansion of expression (21) in a series in the small parameter ξ yields

f(k) ≈ 2
√

2 ξ + 2ξ2 + . . . . (22)

From (22) it follows that as k2 → 1/2 (P → 0), the parameter ξ and the tip deflection tend to zero and as k2 → 1
(P → ∞), the tip deflection is equal to unity according to (21).

Substitution of (20) into (8) yields

λ ≈ 4R2/(π2h). (23)

Expanding in a series with respect to the small parameter ξ up to the second order, we write expression (23) as the
quadratic equation

ξ2 +
√

2 ξ − π2λh/8 = 0. (24)

Solution of Eq. (24) for ξ taking into account that 1/2 � k2 � 1 gives the following expression of ξ in terms of the
normalized load:

ξ ≈ (
√

2/2)(
√

1 + π2λh/4 − 1). (25)

Substitution of (25) into (22) yields the relation between the tip deflection and the load for large values of the
coefficient h and small values of the load λ. In this case, this linearization technique allows one to obtain only the
linear term in the series expansion in λ:

f(λ) = (π2h/4)λ + . . . . (26)

2.3. Case of Small Loads λ (λ → 0). The case λ → 0 is equivalent to the limiting transitions as k2 → 1/2 or
ξ → 0. We linearize the exact expression (6) with allowance for (7) by expanding in a series in the small parameter λ.
To this end, we replace q and F1 in (6) using the relations λ = (2/π)2q2 and F1 = K(k)− (π/2)

√
λ at n = 1. As a

result, we have

2 arcsin [k sn (K − (π/2)
√

λ)] − 2hk(π/2)
√

λ cn(K − (π/2)
√

λ ) = π/2. (27)

Expanding expression (27) in a series in the small parameter λ and restricting our attention to the linear term in
the series, we obtain the following approximate formula for the normalized load:

λ ≈ 8(k −√
2/2)

π2k
√

1 − k2 (
√

2h +
√

1 − k2)
. (28)
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Expanding (28) in a series in the neighborhood of ξ up to the second order of smallness, we write the resulting
expression as a quadratic equation for ξ:

ξ2 +
2h + 1√

2
ξ − π2(2h + 1)2λ

32
= 0. (29)

Solving Eq. (29) for ξ and bearing in mind that 1/2 � k2 � 1, we obtain the following relation between ξ and the
normalized load:

ξ ≈
√

2(2h + 1)(
√

1 + π2λ/4 − 1)/4. (30)

Using (7) and (12), we express the tip deflection in terms of the modulus k and the loading parameter λ:

f(λ) = 1 − 4(E(k) − E(am [K(k) − (π/2)
√

λ]))/(π
√

λ ). (31)

Expanding expression (31) in a series in the parameters ξ and λ and neglecting terms higher than the second order
of smallness, we obtain

f(λ) ≈ −π2λ

24
+

(
− π4

√
2λ2

240
+ 2

√
2
)
ξ +

(π2λ

3
+ 2 − π4λ2

240

)
ξ2 + . . . . (32)

Using (30) and (32), we obtain the following approximate expression for the deflection for small loads λ and any h:

f(λ) ≈ π2(3h + 1)
12

λ +
π4(64h2 − 1)

256
λ2 + . . . . (33)

Expression (33) is a generalization of the approximate results (19) and (26) for the case of arbitrary h. Compared
to (33), relation (19) provides higher accuracy in determining the tip deflection for small values of h.

Using the asymptotic approximations obtained in [9], we construct the following approximate relation be-
tween the tip deflection and the load, in which the coefficients are determined by the nonlinear regression method
for particular values of h:

f(λ) = p1(exp (2(1 − 1/(p2λ + 1)2)) − 1). (34)

The dependence of the coefficients p1 and p2 on h in (34) is shown in Fig. 7 (the root-mean-square error does not
exceed 0.0004 for each case). The error in determining the tip deflection by formula (34) for a given load (which
can exceed three critical loads) is smaller than 3%.

Conclusions. Exact analytical expressions governing the shapes of an elastically fixed flexible rod bent by
a transverse dead load were obtained using the approach of [6]. In contrast to the results of [5, 6], the solution
for the deflections of an elastically fixed rod depends not only on the elliptic modulus k, which is determined by
the external load, loading direction, and solution mode, but it also depends on the elastic-clamping coefficient h.
Approximate formulas were derived for the tip deflection of an elastically fixed rod for limiting cases.

This work was supported by the Krasnoyarsk Region Foundation of Science (Grant No. 15G107) and the
Ministry of Education of (Grant No. 4418).
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